Introduction to Deep Learning (Coursera)

Introduction to Deep Learning (Coursera)

Añade tu reseña
Añadir a Mis FavoritosAñadido a tus favoritosEliminado de tus favoritos 0
Añadir para comparar

Descripción de “Introduction to Deep Learning (Coursera)”

The goal of this course is to give learners basic understanding of modern neural networks and their applications in computer vision and natural language understanding. The course starts with a recap of linear models and discussion of stochastic optimization methods that are crucial for training deep neural networks. Learners will study all popular building blocks of neural networks including fully connected layers, convolutional and recurrent layers.

Learners will use these building blocks to define complex modern architectures in TensorFlow and Keras frameworks. In the course project learner will implement deep neural network for the task of image captioning which solves the problem of giving a text description for an input image.

The prerequisites for this course are:

1) Basic knowledge of Python.

2) Basic linear algebra and probability.

Please note that this is an advanced course and we assume basic knowledge of machine learning. You should understand:

1) Linear regression: mean squared error, analytical solution.

2) Logistic regression: model, cross-entropy loss, class probability estimation.

3) Gradient descent for linear models. Derivatives of MSE and cross-entropy loss functions.

4) The problem of overfitting.

5) Regularization for linear models.

Course 1 of 7 in the Advanced Machine Learning Specialization

Syllabus

WEEK 1 – Introduction to optimization

Welcome to the “Introduction to Deep Learning” course! In the first week you’ll learn about linear models and stochatic optimization methods. Linear models are basic building blocks for many deep architectures, and stochastic optimization is used to learn every model that we’ll discuss in our course.

WEEK 2 – Introduction to neural networks

This module is an introduction to the concept of a deep neural network. You’ll begin with the linear model in numpy and finish with writing your very first deep network.

WEEK 3 – Deep Learning for images

In this week you will learn about building blocks of deep learning for image input. You will learn how to build Convolutional Neural Network (CNN) architectures with these blocks and how to quickly solve a new task using so-called pre-trained models.

WEEK 4 – Unsupervised representation learning

This week we’re gonna dive into unsupervised parts of deep learning. You’ll learn how to generate, morph and search images with deep learning.

WEEK 5 – Deep learning for sequences

In this week you will learn how to use deep learning for sequences such as texts, video, audio, etc. You will learn about several Recurrent Neural Network (RNN) architectures and how to apply them for different tasks with sequential input/output.

WEEK 6 – Final Project

In this week you will apply all your knowledge about neural networks for images and texts for the final project. You will solve the task of generating descriptions for real world images!

Especificaciones: Introduction to Deep Learning (Coursera)

Curso ofrecido por
Disponibilidad

✔ Disponible

Plataforma

Universidad

Impartido por

Alexander Panin Andrei Zimovnov Ekaterina Lobacheva Evgeny Sokolov Nikita Kazeev

País

Russia

Nivel, duración y fechas
Nivel

Avanzado

Fecha

04/05/2020

Duración

6 semanas

Tiempo necesario

6-10 horas/semana

Idioma del curso
Idioma vehicular

Inglés

Subtítulos

No informado

Exámenes y Certificados
Certificados

Certificado de Pago

Exámenes/Proyectos

Con Examen/Proyecto Final de pago

User Reviews

0.0 fuera de 5
0
0
0
0
0
Write a review

Aún no hay reseñas.

Se el primero en opinar sobre “Introduction to Deep Learning (Coursera)”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Antes de enviar tu opinión, has de aceptar nuestra política de cookies y privacidad

Introduction to Deep Learning (Coursera)
Introduction to Deep Learning (Coursera)

Este sitio web utiliza cookies para un correcto funcionamiento. Si continúas navegando estás dando tu consentimiento para estas cookies y aceptas nuestra política de cookies, clic para más información.

ACEPTAR
Aviso de cookies
Comparar artículos
  • Total (0)
Comparar
0