Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)

Añade tu reseña
Añadir a Mis FavoritosAñadido a tus favoritosEliminado de tus favoritos 0
Añadir para comparar

Descripción de “Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)”

This course will teach you the “magic” of getting deep learning to work well. Rather than the deep learning process being a black box, you will understand what drives performance, and be able to more systematically get good results. You will also learn TensorFlow.

After 3 weeks, you will:

– Understand industry best-practices for building deep learning applications.

– Be able to effectively use the common neural network “tricks”, including initialization, L2 and dropout regularization, Batch normalization, gradient checking,

– Be able to implement and apply a variety of optimization algorithms, such as mini-batch gradient descent, Momentum, RMSprop and Adam, and check for their convergence.

– Understand new best-practices for the deep learning era of how to set up train/dev/test sets and analyze bias/variance

– Be able to implement a neural network in TensorFlow.

Who is this class for: This class is for: – Learners that took the first course of the specialization: “Neural Networks and Deep Learning” – Anyone that already understands fully-connected neural networks, and wants to learn the practical aspects of making them work well.

Course 2 of 5 in the Deep Learning Specialization.

Syllabus

WEEK 1

Practical aspects of Deep Learning

Graded: Practical aspects of deep learning

Graded: Initialization

Graded: Regularization

Graded: Gradient Checking

WEEK 2

Optimization algorithms

Graded: Optimization algorithms

Graded: Optimization

WEEK 3

Hyperparameter tuning, Batch Normalization and Programming Frameworks

Graded: Hyperparameter tuning, Batch Normalization, Programming Frameworks

Graded: Tensorflow

Especificaciones: Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)

Curso ofrecido por
Disponibilidad

✔ Disponible

Plataforma

Universidad

Impartido por

Andrew Ng

País

USA

Nivel, duración y fechas
Nivel

Principiante

Fecha

04/05/2020

Duración

3 semanas

Tiempo necesario

3-6 horas/semana

Idioma del curso
Idioma vehicular

Inglés

Subtítulos

No informado

Exámenes y Certificados
Certificados

Certificado de Pago

Exámenes/Proyectos

Con Examen/Proyecto Final de pago

User Reviews

0.0 fuera de 5
0
0
0
0
0
Write a review

Aún no hay reseñas.

Se el primero en opinar sobre “Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Antes de enviar tu opinión, has de aceptar nuestra política de cookies y privacidad

Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)
Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Coursera)

Este sitio web utiliza cookies para un correcto funcionamiento. Si continúas navegando estás dando tu consentimiento para estas cookies y aceptas nuestra política de cookies, clic para más información.

ACEPTAR
Aviso de cookies
Comparar artículos
  • Total (0)
Comparar
0