Exploratory Data Analysis (Coursera)

Exploratory Data Analysis (Coursera)

Añade tu reseña
Añadir a Mis FavoritosAñadido a tus favoritosEliminado de tus favoritos 0
Añadir para comparar

Descripción de “Exploratory Data Analysis (Coursera)”

This course covers the essential exploratory techniques for summarizing data. These techniques are typically applied before formal modeling commences and can help inform the development of more complex statistical models. Exploratory techniques are also important for eliminating or sharpening potential hypotheses about the world that can be addressed by the data. We will cover in detail the plotting systems in R as well as some of the basic principles of constructing data graphics. We will also cover some of the common multivariate statistical techniques used to visualize high-dimensional data.

Exploratory Data Analysis is course 4 of 10 in the Data Science Specialization..

Ask the right questions, manipulate data sets, and create visualizations to communicate results. This Specialization covers the concepts and tools you’ll need throughout the entire data science pipeline, from asking the right kinds of questions to making inferences and publishing results. In the final Capstone Project, you’ll apply the skills learned by building a data product using real-world data. At completion, students will have a portfolio demonstrating their mastery of the material.

Syllabus

WEEK 1

This week covers the basics of analytic graphics and the base plotting system in R. We’ve also included some background material to help you install R if you haven’t done so already.

Graded: Week 1 Quiz

Graded: Course Project 1 – Peer Review

WEEK 2

This week covers some of the more advanced graphing systems available in R: the Lattice system and the ggplot2 system. While the base graphics system provides many important tools for visualizing data, it was part of the original R system and lacks many features that may be desirable in a plotting system, particularly when visualizing high dimensional data. The Lattice and ggplot2 systems also simplify the laying out of plots making it a much less tedious process.

Graded: Week 2 Quiz

WEEK 3

This week covers some of the workhorse statistical methods for exploratory analysis. These methods include clustering and dimension reduction techniques that allow you to make graphical displays of very high dimensional data (many many variables). We also cover novel ways to specify colors in R so that you can use color as an important and useful dimension when making data graphics. All of this material is covered in chapters 9-12 of my book Exploratory Data Analysis with R.

WEEK 4

This week, we’ll look at two case studies in exploratory data analysis. The first involves the use of cluster analysis techniques, and the second is a more involved analysis of some air pollution data. How one goes about doing EDA is often personal, but I’m providing these videos to give you a sense of how you might proceed with a specific type of dataset.

Graded: Course Project 2 – Peer Review

Especificaciones: Exploratory Data Analysis (Coursera)

Curso ofrecido por
Disponibilidad

✔ Disponible

Plataforma

Universidad

Impartido por

Roger D. Peng

País

USA

Nivel, duración y fechas
Nivel

No informado

Fecha

04/05/2020

Duración

4 semanas

Tiempo necesario

3-5 horas/semana

Idioma del curso
Idioma vehicular

Inglés

Subtítulos

Chino Inglés

Exámenes y Certificados
Certificados

Certificado de Pago

Exámenes/Proyectos

Con Examen/Proyecto Final de pago

User Reviews

0.0 fuera de 5
0
0
0
0
0
Write a review

Aún no hay reseñas.

Se el primero en opinar sobre “Exploratory Data Analysis (Coursera)”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Antes de enviar tu opinión, has de aceptar nuestra política de cookies y privacidad

Exploratory Data Analysis (Coursera)
Exploratory Data Analysis (Coursera)

Este sitio web utiliza cookies para un correcto funcionamiento. Si continúas navegando estás dando tu consentimiento para estas cookies y aceptas nuestra política de cookies, clic para más información.

ACEPTAR
Aviso de cookies
Comparar artículos
  • Total (0)
Comparar
0