Advanced Algorithms and Complexity (Coursera)

Advanced Algorithms and Complexity (Coursera)

Añade tu reseña
Añadir a Mis FavoritosAñadido a tus favoritosEliminado de tus favoritos 0
Añadir para comparar

Descripción de “Advanced Algorithms and Complexity (Coursera)”

You’ve learned the basic algorithms now and are ready to step into the area of more complex problems and algorithms to solve them. Advanced algorithms build upon basic ones and use new ideas. We will start with networks flows which are used in more obvious applications such as optimal matchings, finding disjoint paths and flight scheduling as well as more surprising ones like image segmentation in computer vision or finding dense clusters in the advertiser-search query graphs at search engines.

We then proceed to linear programming with applications in optimizing budget allocation, portfolio optimization, finding the cheapest diet satisfying all requirements, call routing in telecommunications and many others. Next we discuss inherently hard problems for which no exact good solutions are known (and not likely to be found) and how to solve them approximately in a reasonable time. We finish with some applications to Big Data and Machine Learning which are heavy on algorithms right now.

Who is this class for: Programmers with basic experience looking to understand the practical and conceptual underpinnings of algorithms, with the goal of becoming more effective software engineers. Computer science students and researchers as well as interdisciplinary students (studying electrical engineering, mathematics, bioinformatics, etc.) aiming to get more profound understanding of algorithms and hands-on experience implementing them and applying for real-world problems. Applicants who want to prepare for an interview in a high-tech company.

Course 5 of 6 in the Data Structures and Algorithms Specialization.

Syllabus

WEEK 1

Flows in Networks

Network flows show up in many real world situations in which a good needs to be transported across a network with limited capacity. You can see it when shipping goods across highways and routing packets across the internet. In this unit, we will discuss the mathematical underpinnings of network flows and some important flow algorithms. We will also give some surprising examples on seemingly unrelated problems that can be solved with our knowledge of network flows.

WEEK 2

Linear Programming

Linear programming is a very powerful algorithmic tool. Essentially, a linear programming problem asks you to optimize a linear function of real variables constrained by some system of linear inequalities. This is an extremely versatile framework that immediately generalizes flow problems, but can also be used to discuss a wide variety of other problems from optimizing production procedures to finding the cheapest way to attain a healthy diet. Surprisingly, this very general framework admits efficient algorithms. In this unit, we will discuss some of the importance of linear programming problems along with some of the tools used to solve them.

WEEK 3

NP-complete Problems

Although many of the algorithms you’ve learned so far are applied in practice a lot, it turns out that the world is dominated by real-world problems without a known provably efficient algorithm. Many of these problems can be reduced to one of the classical problems called NP-complete problems which either cannot be solved by a polynomial algorithm or solving any one of them would win you a million dollars (see Millenium Prize Problems) and eternal worldwide fame for solving the main problem of computer science called P vs NP. It’s good to know this before trying to solve a problem before the tomorrow’s deadline 🙂 Although these problems are very unlikely to be solvable efficiently in the nearest future, people always come up with various workarounds. In this module you will study the classical NP-complete problems and the reductions between them. You will also practice solving large instances of some of these problems despite their hardness using very efficient specialized software based on tons of research in the area of NP-complete problems.

WEEK 4

Coping with NP-completeness

After the previous module you might be sad: you’ve just went through 5 courses in Algorithms only to learn that they are not suitable for most real-world problems. However, don’t give up yet! People are creative, and they need to solve these problems anyway, so in practice there are often ways to cope with an NP-complete problem at hand. We first show that some special cases on NP-complete problems can, in fact, be solved in polynomial time. We then consider exact algorithms that find a solution much faster than the brute force algorithm. We conclude with approximation algorithms that work in polynomial time and find a solution that is close to being optimal.

WEEK 5

Streaming Algorithms (Optional)

In most previous lectures we were interested in designing algorithms with fast (e.g. small polynomial) runtime, and assumed that the algorithm has random access to its input, which is loaded into memory. In many modern applications in big data analysis, however, the input is so large that it cannot be stored in memory. Instead, the input is presented as a stream of updates, which the algorithm scans while maintaining a small summary of the stream seen so far. This is precisely the setting of the streaming model of computation, which we study in this lecture. The streaming model is well-suited for designing and reasoning about small space algorithms. It has received a lot of attention in the literature, and several powerful algorithmic primitives for computing basic stream statistics in this model have been designed, several of them impacting the practice of big data analysis. In this lecture we will see one such algorithm (CountSketch), a small space algorithm for finding the top k most frequent items in a data stream.

Especificaciones: Advanced Algorithms and Complexity (Coursera)

Curso ofrecido por
Disponibilidad

✔ Disponible

Plataforma

Universidad

Impartido por

Alexander S. Kulikov Daniel M Kane Michael Levin Neil Rhodes

País

USA

Nivel, duración y fechas
Nivel

Avanzado

Fecha

04/05/2020

Duración

4 semanas

Tiempo necesario

4-8 horas/semana

Idioma del curso
Idioma vehicular

Inglés

Subtítulos

Inglés

Exámenes y Certificados
Certificados

Certificado de Pago

Exámenes/Proyectos

Con Examen/Proyecto Final de pago

User Reviews

0.0 fuera de 5
0
0
0
0
0
Write a review

Aún no hay reseñas.

Se el primero en opinar sobre “Advanced Algorithms and Complexity (Coursera)”

Tu dirección de correo electrónico no será publicada. Los campos obligatorios están marcados con *

Antes de enviar tu opinión, has de aceptar nuestra política de cookies y privacidad

Advanced Algorithms and Complexity (Coursera)
Advanced Algorithms and Complexity (Coursera)

Este sitio web utiliza cookies para un correcto funcionamiento. Si continúas navegando estás dando tu consentimiento para estas cookies y aceptas nuestra política de cookies, clic para más información.

ACEPTAR
Aviso de cookies
Comparar artículos
  • Total (0)
Comparar
0